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TECENICAL NOTE 4201

COLLECTION OF ZERO-LIFT DRAG DATA ON BODIES OF REVOLUTION
FROM FREE-FLIGHT INVESTIGATIONS

By William E. Stoney, Jr.
SUMMARY

This report presents a compilation of most of the zero-1ift drag
results obtalned from free-flight measurements made by the Langley
Pilotless Alrcraft Research Division on fin-stabllized bodies of revo-
lution. The data are arranged.-on standard forms, which also contain
the significant geometrical factors. Supplementary data heve been pro-
vided to facilitate the determination of the body pressure drags from
the measured totel drags. Summary plots and discussions have been
included to provide a unified and broad picture of the effects of body
geometry on zero-lift drag.

The Mach number range of the tests extends from 0.6 to approximately
2.0 and the Reynolds numbers based on body length from 2 X 106 to 100 X 107

INTRODUCTION

At the present time, the most accurate method of obtaining the zero-
lift drag at trensonic and low supersonic Mech numbers of an arbitrarily
shaped body of revolutlion is measurement by means of wind-tunnel or free-~
flight tests. The importance of accurate knowledge of zero lift has been
increased by the usefulness of the "area rule” concept in the design of
complete ailrcraft configurations, since this concept states that the drag
of a complete aircraft configuration can be determined from its equivalent
body of revolution.

The Lengley Pilotless Airecraft Research Division has flown nearly
200 bodies of revolution of different sizes and shespes for the purpose of
measuring thelr drag at zero lift. The results of many of these tests
have been published in reporits deallng with the systematic variations
which they explored. However, many of these models were designed as
equlivalent bodies of revolutlon, and their drags have been published in
the wildely scattered reports dealing with the sirplane configurations
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they represented. In vliew of the large amount of data availilable and of E
the comparstive obscurity of & large part of 1t, it was felt that a o
collection of such data presented in a standard form would be of aid to ;
the aircraft and missile designers. T ' J

It is hoped that thils collection will be useful in several ways.
The large number of shapes presented hereln may allow the designer to
estimate easily the drag of & desired shape by a simple comparison.
Supplementary data and theoretical estimates have been provided to
facilltate the determination of the body pressure drags from the measured
totel drags. Summary plots end discussions have been included to provide
the user with a unified end broad picture of the effects of body geometry v
on zero lift drag.

SYMBOLS

2 length
d maximum dlameter
1/a fineness ratio
r/R ratio of body radius at any station to maximum body radius .
x/1 ratio of distance measured from apex of nose to total body =

length -
Sp/A ratlo of body wetted area to body frontal area (actual values

c
calculated from expression —Pi_= LZ/d £ a X vwhich is
Ce o R 1

correct relationship between friction coefficient Cp Dbased Z
on wetted area and friction drag coefficilent CDf based on

body frontal area)

S¢/A ratic of fin wetted area to body frontel area
Ay /A ratlo of body base area to body frontal area
81 body slope &t x/l =1 (slope is always negative but is

expressed as positive)

R Reynolds number based on body length, pu
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o) free-streem density
U free-stream velocity

free-stream viscosity

M free-streem Mach number
Cp drag coefficient based on body frontal aresa, EQEEEE
e
CP pressure coefficient, Pressure - Free-stream presgsure
oy2
2
Ce friction drag coefflicient based on wetted area
r' = r/R where R 1is maximum body radius

x' = x/lpoge OF x/lafterbody

ry' = rpgge/R
TESTS

Most data of this report were obtalned by the following procedure:
A fin-stabllized model flying at or near zero 1ift was tracked with a
CW Doppler radar unit as it decelerated through a speed range from
supersonic Mach numbers to high subsonic Mach numbers. The resulting
veloclty time history was arithmetically differentiated to give a decele-
ration time history. Shortly before or after the flight, a record of
the atmospheric properties (density, temperature, and wind velocity) was
obtained from the flight of a radiosonde balloon. This record, together
with a space-position time record of the flight, permitted the zero-lift
drag coefficient to be calculated. The tests differ only in the method
of launching the models into free filight and in the method of obtaining
the altitude time history.

Rocket Model Tests
The rocket-test method 1s the propulsion of the models by rockets

located in the model, or behind the model in the form of booster rockets
which dropped away after burnout. In these tests the models were also
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tracked by an NACA modified SCR-584 position radasr tracking unit, the
data of which were used to obtain the space-position time records used

in the data reduction. In general, the rocket models were of a fair
size: 5 to 8 inches in dlameter and up to 12 feet in length., The data
were obtained with the models at all altitudes up to over 50,000 feet and
Mech numbers over 4. A few carried telemetering equipment and from these
the total drag was also obtalned from decelerometers and the base drag
from pressure cells. )

Helium-Gun Tests

The second technlque, the helium-gun test, was the launching of
small models (roughly 2 inches in diesmeter and 12 inches long) from a
helium gun. The helium gun used to launch these models was a 24-foot
smooth-bore barrel 6 inches in dlameter attached by valves to a
100-cubic-foot tank of helium under a pressure of 200 pounds per square
inch absolute. The models were ejected at Mach numbers up to 1.4. The
space time histories of these models were calculated from the velocity-
time data, and the data were reduced as before. A satisfactory check
of the flight-path celculation method was made by tracking several models
with the SCR-584 unit. The models were fired at an angle of 20° to the
horizontal and never rose over an altitude of 2,000 feet.

Accurecy

Inasmuch as the tests have been made over & period of several years
with continually verying techniques, it is difficult to assign a general
figure for thelr accuracy. The veloclmeter record is accurate to within
0.2 percent, and the derived accelerations, although the result of s
short-time averaging process, are accurate to within 1 percent except in
the region of the drag rise where it 1s possible for abrupt changes to
be somewhat softened by the averaging process.

One approach to a value of accuracy is the comparison of the drag
of ldentical models, since all the variable factors, inaccuracies in body
ordinates, velocity measurement, atmospheric conditions, wind velocity,
and data reduction are included. )

From the variations shown by the models of configurations 8, 22, 27
to 30, 75 to 77, 106 to 109, 128, 139, and 151 reasonsble limits of error
for Cp and Mach number appear to be . :

ACp = #0.0L

MM = +0.01
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Another check on the accuracy is given by a comparison of the data
of model 109 with a wind-tunnel test of an identical configuration,
This comparison is shown in figure 1 and is quite good.

A third indication of the accuracy of the tests is given by & com-
parison of the nose pressure drags obtained from eight helium-gun models
with values measured in s wind tunnel and calculated by second-order
theory. The comparisons are qulte close and indicate accuracy at least
to the values quoted (see the discussion on nose drags in the section
"Summary Curves").

PRESENTATION OF DATA

General Orgenization

With the thought in mind that the important product of these tests
is the body pressure drag, the configurations are divided into two types -
"smooth" and "bumpy" - and are presented in order of increasing fineness
ratio. A smooth body is defined as one whose meridlian increases without
inflection points to & maximum and stays constant or decreases without
Infiection points to a minlmum. All other bodies are considered to be
bumpy. Since only the nose and afterbodyl contribute to the pressure drag,
the significant fineness ratio of the smooth bodies has been assumed to be
that of the sum of the nose and afterbody. Such grouping assumes that the
effects of the nose on the afterbody drag are of second order. Since such
a division cannct, in general, be made for the bumpy bodies, they are pre-
sented in the order of their totel fineness ratios. Thils classification
by fineness ratic has the adventage of simplleity, and its usefulness is
based on the genergl fact that this parameter is the most lmportent single
factor affecting body pressure drag.

The shape of the parts of the body is the other wvariable and since
the assumption that the effect of shape 1s independent of fineness ratio
appears to be useful, the body ordinates have been nondimensionalized
and are presented in grsphlcal form for each of the configurstions. In
order to utilize this assumption strietly, the individual parts should
have been presented individually; however, this manuner of presentation
would have posed great problems for the bumpy bodles and was abandoned
in favor of the simpler method used. This method has the advantage of
enabling comparisons of bumpy and smooth bodles to be made by matching

lThe nose is herein defined as that part of the body up to the maxi-
mum dlameter and the afterbody as that part from the maximum diasmeter to
the base. Cylindrical sections of meximum diameter are considered as
separate units and thus the sum of the values of 1/d of the nose and
afterbody can be less than the total value of l/d of the body.
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their nondimensional ordinate curves and their total fineness ratios.
Camparisons of the drag curves of such bodies allow estimstes of the
bumpiness of a bumpy body, that is, Insofar as drag is concerned.

The basic datae are supplemented by curves of friction, base, step,
end fin drag (figs. 2 to 5). Summery curves of data from various
systematic investigations are presented in figures 6 to 10. Socme
curves showing the general effect of body shape on drag asppear in
figures 11 to 15. The basic data are presented in figures 16 to 183
and are separated into two main groups. Figures 16 to 120 present the
date for all the smooth bodles and the data for the bumpy bodles are
presented in figures 121 to 138. (These data were compiled from refs. 1
to 16.) A particular configuration may be found quickly by reference to
table I where the configurations are listed together with thelr distin-
guishing geometrical properties.

Presentation of Model Cheracterlstics

Enough information appears in the draewing end graphical presentation
of the ordinates to allow reconstruction of the model with reasonable
accuracy. Many of the smooth bodles had analytical meridians of parabolic
form or mixed parabollc and hemispherical form; thils notatlon has been
made in the figure. The following egquations were used for parabolic noses
and afterbodies, respectively, )

r' = 2x! _xxz

r'=1- (1 - rb')x‘2

Pertinent fineness ratlios, area ratios, and angles are given to
allow quick comperlsons of configurations. The type of test, rocket or
helium gun, is also noted. All dimensions given in these figures are in
inches.

Presentation of Data

Total zero-lift drag coefficlents based on body frontel area and
Reynolds number based on body length are presented for each model.” The
total-drag curves are curves falred through the original data points by
the present author and thus may in some cases differ slightly frxrom
values previously published. For those configurations for which more
than one model were flown the individual curves are labeled a, b, and



NACA TN 4201 T

so forth. For the models on which base pressures were measured, the-
base pressures are alsc presented.

For convenience, the friction drag calculated by the method of Van
Driest (ref. 17) has been presented for each model. TFor cases in which
the Reynolds numbers and the data appeared such that the flow over both
the body and fins was turbulent, the points calculated were indicated by
a square symbol [] and connected with a dashed line. If the data
appeared to be In the range in which the fin boundary layer may have been
elther laminar or turbulent, calculations were made for both conditions,
and the points for both conditions were presented and left unconnected;

thus, the circled points () represent the calculation for turbulent body
flow plus laminar fin flow,

A word of warning is in order here: 1In the figures in which both
symbols appear at the subsonic end of the Mach number scale and only the

fully turbulent symbol [-] appears at the supersonic value, the Reynolds

numbers are such that it 1s possible that transition from laminar to
turbulent flow has occurred at some Mach number between the two extremes.
This meeans that any pressure or weave drags derived by subtracting base,
fin, and frietion drag from the total dreg can be in error by the amount
of the difference between the turbulent and laminar fin frietion drags.
Configuration 158 (fig. 164) presents a case in point, although for this
model the transition appears rather dramatically in the total-drag curve.
This is unusual, and the change would not be at all apparent if the
transition had occurred in the rapidly rising section of the drag curve.

Further discussion of frictlon drag is presented in the "Supplementary
Data" section.

SUFPLEMENTARY DATA

This report presents a collection of total-drag curves for various
bodles of revolution stabllized by fins. The usefulness of the data is
largely determined by the information which can be obtalned from these
total drags concerning the values of the pressure or wave drags of the
bodies alone (i.e., not influenced by the fins), since it is the wvalue
of this component of the supersonic drag that is always difficult and
often impossible to calculate from theoretical considerations in the low
supersonic speed ranges considered. In order to obtain the wave drag of
the body alone fram the test results, the friction, base, and fin pres-
sure drags must be known or assumed.

The friction drag can be calculated accurately for most bodies. TFor
meny bodies, the base drag is negllglble and the base dreg for most of
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the remaining bodies can be estimated accurately from empirical curves.
The fin affects the drag in three ways - fin pressure drag due to fin
induced pressures, pressure drag of the fin due to the body, and pressure
drag on the body due to the fins. The value of the first component has

in this report been elther measured or calculated for most of the fins
used. Values of the interference terms are, in general, not calculsable.
For the models of the present report, it appears reasonable to assume that
the interference terms are negligible for most cases since the fins are
extremely thinZ2,

The following sections provide the date necessary in the breakdown of
the total-drag curves into thelr component parts.

Friction Drag

Figure 2 presents average flat-plate friction coefficients based on
wetted area as funections of total Reynolds number for various Mach numbers.
A1l values are for an insulated wall (no heat flow), which is correct for
the wooden-surface models and 1s nearly correct for the models with metal
surfaces and Mach numbers near 1., These values were used in the calcula-
tion of the friction drags shown on the data plots. The use of flat-
prlate values for bodies of revolution is not exactly correct because of
at least two factors - first, the difference between two- and three-
dimensional flow, and, second, the existence of velocitlies higher than
free-stream velocity on the surface of the bodies. Both of these effects
are functlons of body fineness ratio, the effects being most in evidence
at lower values of Z/d. Reference 18 gives an approximate correction
factor for the higher average velocltles existing on bodies of revolution

Cr s .
(Ptlpody of rev 0.5

as =1 + 573 which 1s supposedly valid at Mach numbers

C

(®Pe)210t plate .
as high as 1. Both effects are apparently smsll for the bodies of this
report.

2The interference has been shown to be ‘éssentially zero by wind-
tunnel tests of configurastion 109 (see fig. 1) since the fin drag
obtained by subtracting finned and unfinned results agreed exactly
(except at M = 1) with fin drags obtained on special free-flight models
on which the interference drag was zero by virtue of the cylindricsal
shape of the body. Since model 109 is of high fineness ratio this
result cannot be applied generselly. An attempt to measure fin inter-
ference was made with configurations 48 and 49. Although these bodies
hed low-fineness-ratlo afterbodies on which the fin interference was
expected to be large, the measured differences were small and in the
opposite sense to that expected. '
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Another assumption has been made in the calculation of the friction
drag - namely, the bodles have been assumed to have elther completely
laminar or completely turbulent flow on the body and fins. This assump-
tion may be erronecus for some of the models flying at Reynolds numbers

from 1 X 10~ to 5 x'lO6 and should be kept in mind in the analysis of
such data. The only models for which this assumption is obviously wrong
are models 104 and 105 (figs. 112 and 113), even though they flew at
extremely high Reynolds numbers. These models are both models of the
NACA EM-10 body, which has been extensively tested in wind tunnels (see
refs. 13, 19, and 20). These models are more carefully finished than the

majority and long runs of laminsr flow (Reynolds numbers up to 40 X 106)
have been detected on the body on scme flighta. Even more likely are
long runs of laminar flow on the fins and since the fins of these models
contribute nearly es much frictlon-drag area as the body, thls would
cause a large error 1n the calculations as made. With these considera-
tions, if the pressure drag of this configuretion 1s desired it would be
best to obtain it from theory or the wind-tunnel resulis presented in
references 13, 19, and 20. Note, however, that the base drags obtained
from flight measurements should be the most accurate, since the tunnel
measurements contain sting interference effects. References 13, 19, and
20 also give examples of the effects of Reynolds number, transition, and
heat transfer on friction drag. )

Base Pressure and Base Drag

Reference 21 contains excellent anelysis and date. on base pressure
behind both two- and three-dimensional bodies when the boundary layer is
turbulent ahead of the base and the Mach numbers are in the range con-
sidered in this report. The following discussion follows this reference.

Three-dimensional base Grag.- Figure 3 presents the base-pressure
drag coefficilents as a functlion of Mach mumber for & cylindrical after-
body of infinite length (refs. 21 to 23). As mentioned in reference 21,
the base pressure behlind a cylindrical base can be Influenced by flow
conditions such as fin and nose pressure flelds ahead of the base even
when the boundary layer is turbulent well shead of the base. For the
bodies of the present report, such differences are bellieved to be small
enough that the curve shown in figure 3 may be used, the possibllity of
such an error being always kept in mind, however, especially for subsonic
speeds (see ref. 18, pp. 30 to 3k4).

Most of the bodies reported herein have afterbddles, that is, a base
diameter which is smaller then the maximum diemeter. The bage drag of
such bodies is discussed in reference 21; however, the method of ‘evalu-
ating such base pressures discussed therein 1s too complicated for the
purposes of the present paper, since the value of the base drag 1s seldom
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a very large percentage of the total drag for boattailed bodies. Some
published wind~tunnel deta on the base drag of conical afterbodies sug-
gest the empirical expression -

c -C Thage \’
D,vase ~ “D,cylinder bese{™ g

Care must be taken in applying thls equation at subsonic Mach numbers
since 1t does not account for the possibility of negative base drags
which can exist (ref. 24).

Two-dimensional base pressures.- Figure 3 also presents bese-
pressure coefficients for a two-dimensionel base from references 21 and
25. The data represent the base pressures behind slab wings. They are
presented herein as an estimate of the pressures behind a rearward
facing step on a body of revolution.

Pressures on a Forward Facling Step

Figure 23 presents the pressure coefflcients requlired to separate
the turbulent boundary laeyer in front of a step of several times the
boundary-layer thickness. (See ref. 26.) It appears from page 52 of
reference 18 that a pressure coefficient of CP = 0.41 is valid at sub-

sonic speeds as well as Mach 1. Again these essentially two-dlmensional
values are presented as estimates for the pressures shead of forward
facing steps on bodies of revolution.

Fin Pressure Drag

Figure 5 presents the pressure-drag coefficlents based on the
exposed plan-form area of the fin (note this is one-half the value of
Sf/A given on model sheets) for most of the fins used in this report.

Extreme accuracy has not been striven for or cbtained, since in most
cases the fin pressure drag ie such a small part of the total drag that
a 50-percent error in fin drag is of the order of the test accuracy.
The pressure drag of fin type A 4122277 s which is used by the
mejority of the models, was measured by means of special helium-gun

models. The drag of fin type B 4125257 was measured by speclal rocket

models, the data for which are presented in reference 27. The super-~
sonic pressure drag thus obtained is so similer to that measured on

G
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type A that they have been shown as one curve. The pressure drag of 'fin

type C 4521 was estimated by reducing the drag rise of a 6-percent-thick
delta wing of reference 27 (p. 47) by the squere of the thickness ratios.
The pressure drag of type D z{i:] is simply the two-dimenslonal base

pressure of figure 3 referred now to the fin plan-form area.

SUMMARY CURVES

Systemetic Investigations

A majority of the smooth bodies of this report were flown in pro-
grems designed to investigate the results of systematic geometrical
changes in the body shaepes on zero-lift drag. Figures 6 to 10 present
summary plots of total-drag coefflcients for the most important of these
investigations. These figures give a broad picture of the effect of the
most importent varlables on the total body drag; that is, fineness ratio
and meximum diameter location (fig. 6), nose shape and fineness ratio
(figs. 7 to 9); (see also configurations 1 to 8) and afterbody fineness
ratio and shape (fig. 10). Various other methods of correlating the data
will be immediately epparent to the reader, but it is suggested that the
original references be consulted before too elaborate an anmlysis is
attempted, since the various data have been handled in more detall in
these reports than in the present report.

Drag Anslysis

The data of this report, together with date from wind-tunnel tests
and theoretical results allow some general conclusions useful to designers
to be drawn. Some of these conclusions are presented in the following
paragraphs. The effects of nose and afterbody shape are discussed sepa-
rately, after which a brief discussion is given of the effects of the
shapes of complete bodles.

Nose drag.- In the analysis of nose drag it is helpful to use one
of the basic premises of this report, that is, that the effects of-shape
and fineness ratio may usefully be considered separately. The variation
at M = 1.4 of the nose pressure drag with l/d is presented in fig-
ure 11. The lower curve represents near minimum nose pressure drags. At
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low values of l/d, the minimum curve was obtained by fairing through
the flat-face value (Cp = 0.8Cpt sl and hemisphere values (ref. 28).
o

Above 1/d = 1.4 it was determined from second-order calculations

(by the method of Van Dyke, ref. 29) of bodies defined by r' = x'3/4
2x' - 2 x!
i

and r' = —_— Note that neither of these bodies has zero slope at

L
)
its meximum diameter. Since the calculations and experiment agree well
for noses having 1/d = 3 (see fig. 12) a fair amount of confidence may
be placed in the values shown. Second-order calculations are also shown

for the parabolic nose r' = 2x' - x'2 used on so many of the models in
this report. Taylor-McColl cone values are also shown for comparilson.

Although Z/d is shown to be a powerful paresmeter, the effects of

shape can be lmportant as can be seen in figure 12. *The results shown
in this figure are particularly gratifying in that the values from free-
flight and wind-tunnel tests and several theories are in marked agreement.
As can be seen from this figure, there is no one minimum-drag shape for
the entire Mach number range but several do well over the entire range.
(Refs. 30 and 31 present the drags of meny shapes not shown here. )
Note these results are for Z/d = 3 and the relative drags may change
with 1/d. Data from reference 30 have beén combined with the data of
this report in part (b) of figure 12 to illustrate some general state-
ments about the effect of nose geometry on drag. The drags of the

xl/lL and the ellipsold show the high pesk drag level and late pesk drag

Mech numbers characteristics of blunt nose bodles. The xl/4 nose
though not absolutely sharp (thé cone could also have been used) shows
the early drag rise and early sharp peak drag and the rapld decrease of
drag with Mach number to be expected on sharp-nose bodles of revolution.

The Von Kdrmdn nose which has the x3/lr profile at its apex but which
is blunter immediately behind the apex produces a drag varlation with
Mach nmumber which Incorporstes the desirable features of both types of
nose, that is, late drag rise, soft peak and low pesk drag level, and
decreasing supersonlc drag. This result is perhsps not so surprising
since this nose was designed (from linearized theory) for minimum drag
for a given Z/d at low supersonlc Mach numbers.

When these results are applied to the design of a complete body, 1t
must be remembered that the interference drag of the nose on the after-
body 1s also a functlon of nose shape. There are indlcations that the
lowest drag shapes which do not have zero slope at thelr maximum dlameter
have higher interference drag potential than thelr smoother appearing
brothers. (See the discussion entitled "Total body drag.")

ol
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Afterbody drag.- The data of figure 10 have been analyzed to give
the drags of the afterbodies caused by the pressures acting over the
afterbodies and bases. (For details of the drag breakdowns, see ref. 6.)
The results are presented for M = 1.2 in figure 13. The data for the
conical afterbodies are compared with the following semiempirical
equation:

Cp, ., - 0.0018 +Mo.0007192E ) (Il;—b)n—l . Cdb(ll;_b)B 1)

where
n=4k (M < 3.5)
n=3% M > 3.5)

€@ 1is the slope of the afterbody in degrees (used as positive, although
actually always negative; not applicable for positive values of 9) and
Cdb is the base pressure drag of the cylinder (fig. 3). The first term

of the equation approximates the second-order theoretical values calcu-
lated by Jack (ref. 32) while the second term is a purely empirical
gpproximation for the effect of base diameter ratio on the base pressure.
In view of the inaccuracies inherent in both the experimental and the
theoretical values (the theory, for instance, was csalculeted only for

M > 1.5), the nearly exsct agreement of the two shown in figure 13(a) is
almost embarressing and should be regarded as somewhat fortuitous. How-
ever, it is apparent, from the comparisons of this report with the second-
order theory of reference 32 and from the comparisons of reference 6 with
other theoretical calculatiocns, that afterbody drage can be calcylated
reasonebly accuretely for afterbodies having maxlmum slopes of less than
about 15°. At or above this degree of convergence large discrepancies
may be expected (see ref. 6), theoretical calculstions tending to over-
estimate the drag. '

All the test results of both parsbolic and conical afterbodies and
the theoretical calculations lead to an extremely simple ruie for
selecting minimum drag afterbodies 1f & required value of .Z/d is given.
The center line in figure 13(b) represent conical afterbodies with a
slope of 4.5° (or parabolic meridians with a base slope of 9°). The
dats points represent the parabolic afterbodies of figure 10; note also
that the tangent to the parsbolic base angle 1s alweys exactly twice that
of the inscribed conical body. The minimm drag bodies all fall on this -
line. The fact that for a given value of 1/d4 the required ratio of
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base diemeter to meximum dismeter is much less important at the higher
values of 1/d can be noted in figure 13(a), and is shown more graph-
ically by the shaded area on the lower figure which shows the limits

of configurations whose drags lie within about 10 percent of the minimmm.
The range of optimum conical angles indicated (3.5° to 6.5°) is of the
same order (5° to 7°) as that used for some time by ballisticians for
the drag reduction of bullets.

Total body drag.- If the minimum afterbody drags et each value of
1/d& are taken, the resulting plot (fig. 14) may be said to represent a
near minimum possible afterbody pressure drag for M = 1.2. A similar
curve 1is presented for the nose drag and was obtained by fairing through
the blunt nose values from configurations 1 to 7, through the minimum

1/d = 3 nose drag (r' = x‘l/2 (fig. 12)) and through the M = 1.4
values for the higher values of l/d (fig. 11). These curves are pre-
sented to give some practical boundaries, admittedly empirical and rough,
to the minimum drag problem.

If the nose and afterbody minimum drags are added for bodies with
their maximum diemeter at their midpoints, the solid curve on figure 15
is obtained. If the same drags are added with care taken to position
the maximum dlesmeter at the most favorable position the dashed curve
is obtained. (This position moves rapidly redrward from x/l = 0.55
for 1/d =7 to x/t =1 for 1/d =3 for the near minimum curves of
figure 1h4; however, such values are extremely susceptible to small
changes in level in either of the nose or afterbody drag curves end must
only be considered as indicative of the trend.) Also, the drag rises

&y = C -C -C for the smooth bodies of
( D Diotal Prriction Dein pressure)

this report are plotted at the fineness ratlo representing the sum of
their nose and afterbody fineness ratios. Most of the bodles at low
values of l/d actually had cylindrical center sections and thus their
interference draegs were low. This must be kept in mind when the use of
either of the empirical curves ss minimum drag boundaries is contemplated.
As an instance of this, compare the pressure drags of models 84 and 85

which are ldenticel in shape (r' = x‘l/a), and fineness ratio of nose
and afterbody, and differ only in the cylindrical center section of
model 85. The higher pressure drag of model 84 must be attributed to
interference of the nose on the afterbody. This interference drag seems
high in comparison with the dreag produced by the Interaction of nose and
afterbodies of the parsbolic bodies of figure 6 which are indicated to
be of the order of model 85 (and essentially zero) by & breskdown of
thelr drags into.component parts and & comparison of the pressure com-
ponents with second-order theoretical calculations (ref. 29). It seems
reasoneble to assume thet at total fineness ratios below 6, the effect

of nose induced pressures on afterbody drag and perhaps more significantly
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on base pressure (note large base dlemeter ratios of minimum dreg after-
bodies of fineness ratios less then 3 (fig. 13(b)), and see ref. 21 for
some examples of such effects on base pressures)} will be the important
and perhaps the determining factors affecting both the shape of the body
and the value of the drag of minimunm drag designs.

While it is not a factor considered in the discussions of this
report 1t must always be remembered that the dependence of drag on l/d
is also a function of the friction coefficient, and that it 1s the
increase of friction drag with 1/d that limits the dreg reduction due
to increasing 1/d.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
lLangley Fleld, Va., September 3, 1957.
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Tests

Remarks:

Rooket

See figure ULl.
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Deslignations: 37
Test: Helium Gun

Remarks: Nondimensional or((iina.tes %dentical to configuration 10
fig. 168
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Designation: 3§

Testz Rooket

Remarks: Spike can affect friction dreg dbut is not likely to effect
pressure drag. -

Pilgure U46.
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Designation: 39

Tests Hellum Gun

Figure LU7.
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Designations ho

Tests Rocket

Remarks: Flet nose having r/R =2 0.57 f£flaired into parsbolic segment
by 3.02 radius; parsbolic afterbody.

Figure 48. _
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Designation: W

Tests Rocket

Remarks: Nose consists of hemisphericsl segment plus parabolic
segment; perabolic afterbody.

Figure 49.
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Designations L2

Test2z Helium Gun

Figure 50.
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Designations b3

Tests Rccket

Remarks: Pardbtlic nose and afterbody.

Figure 51.
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Designations Ll

Testsz Helium Gun

Figure 52.
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Designations Ls

Teat:s Rocket

Remarks:

parebolic afterbody.

Figure 53.

Conical nose with hemispherical and parabolic segments;
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Designations Lé

Testz Rooket

Remarks: Nose with hemispherical and parsbolic segpents;
Pparabolic afterbody.

Figure 5k.
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Designation: h'7

Tests Rooket

Remarks: Nose consists of parebolic segment; parebolic aftexrbody.

Figure 55. -
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Designations Lg

Tests Helium Gun

Remarks:

Body differs from configurations 49 and 50 (figs. 57 and 58)

only in removel of Mach 1 area distribution of fins from afierbodies
of these models. '

Figure 56. -
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NACA TN k2ol

Designations L9

Test: Hellum Gun

Remarks: Persbolic nose and afterbody; body identicel to config-

uration 50.

Flgure 57.

(Bee note for configuration 48 (f£ig. 56).)
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Designations: 50

Tests Helium Gun

Remarks: Parabolic nose and afterbody; body identical to config-

uration 49. (See note for configuration L8 (Fig. 56).)

f’igure 58.
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Designation: 51

Testz Helium Gun

Figure 59.
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Deslgnations 52

Tests Rocket

Remarks: Nose consists of hemisphericel) and parebdlic segments;
parabolic afterbody. :

Figure 60.
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Designation: 53

Test: Helium Gun

Figure 61.
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Designations: 5§

Test: Helium Gun

Figure 63,
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Deslgnation: gg

Test: Helium Gun

Remarks: Conlcal ncse and efterbody.

Figure 64,
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Figure 65. .
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Designations 58 -

Test: Helium Gun

Remerks: Nose, Von Kdimdn, r' = % \J¢ - 1/2 8in“§ where
n

@ = cos™H{1 - 2¢'); conical efterbody.

Figure 66.
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Designations 59

Test: Helium Gun

Remarks: Perabolic nose; conical afterbody.

Figure 67.
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Designation: 4o

Test; Helium Gun

Remarks: Nose, L-V Heack, ' = %W - 1/2 sin®d £ 1/5 sin’g

where +§ = cos™H{1 - 2%').

Figure 68.
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Designations 43

Test: Helium Gun

Remarks: Nose, r' = x'p/h.

Figure 69.°
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Designations 63

Test: Helium Gun

Remaxks: Nose, r' = x' %; conical afterbody.

Figure T1.
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Deaignation: &4

Teat:s Rocket

Remarks: Nose consists of hemispherical and parabolic segments;
parabolic afterbolic.

Figure T72.
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Test: Helium Gun

Figure T73.
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Designations §4

Testz Rooket

Remarks: Nose consists of hemisphericel and parabolic segments;
pearebolic afterbody. B

Figure Th.
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Designation 67

Test: Helium Gun

Figure 75.
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Figure 75.- Concluded.
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' Designation: 568

Ieats Rocket

Remarks: All conicel sections.

Figure T6.
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Designation: 69

Test: Rooket

Figure TT.
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Deslignations: 70

Tests

Remarks:

Rocket

Nose consists of hemispherical end perebolic segmentsj
parebolic afterbody.

Figure 78.
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Test: Rocket

Flgure T9.
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Designation: 172

Tests Rooket

Nose consists of hemisphericel and perabolic segments;

Remarks:
parabolic afterbody. -

Figure 80.
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Figure 80.- Concluded.
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Designations 73

Test:s Hellum Gun

Figure 81.
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Figure 81.- Concluded.
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Designations Th —

Tests Rooket
Remarks: Parabolic nose and afterbody.
Figure 82.
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Designationz 175

Tests Roocket

Remarks: Parabolic nose and afterbody.

Figure 83.
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Figure 83.- Concluded.
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Deaignationz ¢

Teat: Rocket

Remexks: Parabolic nose and afterbody; waviness of coefficient of low.
Mach number models is probably due to afterburning of their sustalner

rockets.

Figure 8k.
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Designatlon: 77

Test: Rogket

Remarks: Parsbolic nose and afterbody.

Figure 85.
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Figure 85.- Concluded.
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Deaignation: T8

Test: Helium Gun

Remarks: FPearebolic nose.
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Figure 86.
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Figure 86.- Concluded.
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Designation: 79

Tests

Helium Gun

Figure 87.
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Figure 87.- Concluded.
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Designation: B0
Test: Helium Gun

Remarks: Parsbolic nose and afterbody.

Figure 88.
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Figure 88.- Concluded.
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Designation: 81

Helium Gun

Pargbolic nose and afterbody.

Figure 89,
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Figure 89.- Concluded.
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Designations 82

Tests Hellum Gun

Remarks: Parsabolic nose; conical afterbody.

Figure 90.
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Figure 90.~ Concliuded.
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Designation: 83

Test: Hellum Gun

Remarks: Parebollic nose and afterbody.

Figure 91.
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Figure 91.- Concluded.
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Designatlion: 8
Tests Helium Gun

Remarks: Contour of nose and afterbody exsctly the same as those
of configuration 85 (fig. 93).

Figure 92.
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Figure 92.- Concluded.
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Deslgnation: 85

Test:z Helium Gun

Remarks: Contour of nose and afterbody exactly the same as
configuration 84 (fig. 92).

Figure 93.
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Figure 93.- Concluded.
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Designation: 86
Teats Helium Gun

Remarks: Flat face of model ceused high subsonic drag. (See also
configuration 47 (£ig. 55).)

Figure 9.
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Figure 94.- Concluded.
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Designatiuns 87

Test: Rooket

Remarks: Parabolic nose and afterbolic.

Figure 95.
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Parabolic nose and afterbody.

Figure 95.
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Designation:; 88

Testz Rocket

Remaxrks: Parabolic nose and afterbody.

Figure 96.
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Figure 96.- Concluded.
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Designation: 89

Tests Rooket

Remarks: Parabolic nose and afterbody.

Figure 97.



Figure 97.- Concluded.
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Designations 90

Tests

Rocket

Figure 98.
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Figure 98.- Concluded.
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Designations 91

Tests Rooket

Remarks: KNose consists of hemispherical end parabolic segments;
parsbolic afterbody.

Flgure 99.
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Designations 92

Test: Helium Gun

Remarks:

Parebolic nose; cylindrical afterbody.

Figure 100.
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Figure 100.- Concluded.
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Designation: 93

Tests Helium Gun

Remarks: Parabolic nose end afterbody.

Figure 101.
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Figure 101.-~ Concluded.
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Designation: 9’-(-
Tests Helium Gun
Remarks: Perabolic nose and afterbody. _
Figure 102. .
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Figure 102.~ Concluded.

211



212 NACA TN L4201

1.0 — n— T

.8 Eq: = 3
.6
!‘/R uE i
-l-'. ;u -
2 i =
1
0 al u2 53 . 05 . t? 08 09 1.0

x/%
t/8rota1(10.63/L/qNose | 7.13 [Su/A | 28.30 [Av/A 0.0
Vg, 110.63/3/8act | 3.50 [Se/A [11.0 | % |15.8°

Designation: 95

Tests Helium Gun

Remerks: Parebolic nose and afterbody.

Figure 103.
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Figure 103.- Concluded.
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Deaignations 96
Teatz Rocket

Remarks: Conicael nose snd afterbody.

Figure 104.
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Designatlon: g7

Test: Rocket

Remarke: Conical nose and afterbody.

Figure 105.
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Designations 98

Test: Helium Gun

Remarks: Psarsbolic nose; cylindrical afterbody.

Figure 106.
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Figure 106.- Concluded.
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Figure 107.- Concluded.
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Designation: 100

Tests Helium Gun

Remarks: Parsbollic nose; conical afterbody.

Figure 108.
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Figure 108.- Concluded.
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Designation: 101

Test: Hellum Gun

Remarks: Parsbolic nose; conicel afterbody.

Figure 109.
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Figure 109.~- Concluded.
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Designatlions 102
Test: Helium Gun
Remarks: Parsbolic nose and afterbody.
Figure 110. -
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Figure 110.- Concluded.
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Designations: 103

Test: Helium Gun

Remarks:

Parsbolic nose and afterbody.

Figure 111l.
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Figure 111.- Concluded.
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Designation: 104

Tests Rocket

Remarks: Parsbolic nose and afterbody twice scale of model 105.
Calculated friction drag coefficients are cbviously too high.
{See noti.e for model 105 (fig. 113) ebout oscillations in drag
curves.

Flgure 112.



Figure 112.- Concluded.
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Designation: 105

Tests

Rocket

Figure 113.
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Designations 106

Tests Roocket

Remsrks: Parebolic nose and sfterbody.

Figure 11k4.
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Figure 11lk.- Concluded.
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Designation: 107

Test:s Rocket

Remarks: Parsbolic nose and afterbedy.

Figure 115.

0.25

o9

1.0



NACA TN L4201 237

Figure 115.- Concluded.
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Designation: 108

Tests Rocket

Remerks: Parebolic nose and afterbody; both models appear 1o have been
affected by rocket afterburning which caused the wavy curve of Cp
at supersonic Mach numbers. B

Figure 116. -
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Figure 116.- Concluded.
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Designation: 309

Rocket
Parabolic nose and afterbody.
Figure 117.
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Figure 117.- Concluded.
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Designation: 110

Tests Hellium Gun

Remarks: Nose and afterbody, r' = x'5/h'.

Figure 118.



NACA TN 4201 243

Cp

o7 8 .9 1.0 1.1 1.2 1.3 . .).|.

Figure 118.~ Concluded.
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Designations 111
Tests Rocket
Remarks: Perabolic nose and afterbody.

Figure 119.
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Tests Helium Gun

Remexks: Curved presented ere faired values cbtained from the dreg of
two models for each of the configurations. In each case the drags
of the identical models were quite close, indicating that the models
were et essentielly o° engle of attack since it does not appear
reasonable that the drsg due to oscillations would be s repeatable
phenomena.

Figure 121.



2F

NACA TN L20L

1.4

1.

1.2

1.1

¢p

Based on
base area

laf-spike no.llIS

Figure 121.- Concluded.

2kg



250 NACA TN 4201

Aipeelgil— | 050

5.60 -

1.0 i 7.75
18 =
-6 = ::
r/R i
A
2
o} .1 2 o3 A 5 .6 .7 .8
x/1
z‘/"~To*l:a.l 5.23% I'/dNoae sb/A 13.1 A'b/A _g,
L/dN+A 5,231/6'“1: Sf/j. 5.8 eb e 5@

Designation: 116

Test: Helium Gun

Figure 122.
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Tests Hellum Gun

Figure 123.
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Designations 118

Test: Helium Gun

Figure 124.
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Figure 125.
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Test: Helium Gun

Figure 126.
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Designations 121

Test: Hellium Gun

Figure 127.
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Tests Hellium Gun

Figure 128.
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Dasignatlon: 123

Testz Helium Gun

Remarks: Subsonic flow prcbebly separated at rear step.

Pigure 129.
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Figure 130.
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Remarks: Although the calculated friction drag indicates that the fins
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predict. The drag difference between the laminar friction calcu-~
lations and the experimental subsonic values msy be due to sepa-
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Figure 131.
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Figure 132.
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Remarks: Assuming seperatioh at step %N 0.9) and subsonic
Cp = -0-1, the subsonic base drag would be Cp “* = 0.1 X 0.5 = 0.05.
This would indicate that subsonic fin flow was laminar.

Figure 133.
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Designations 128

Tests: Helium Gun

Figure 13k,
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Designations 130

Test: Helium Gun

Remarks: Subsonic flow probably separated about % = 0.97.

Figure 136.
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Test: Helium Gun

Figure 137.
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Figure 137.~ Concluded.
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Tests Helium Gun

Figure 138.
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Figure 13%8.- Concluded.
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Designation: 133

Tests Helium Gun

Remarks:

Flow is probably sepesrated at subsonic speeds.

Figure 139. _
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Tests Helium Gun

Probable that subsonic flow was leminer. (See note for

Remarks:
model 125 (fig. 131).)

Figure 140.
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Figure 140.- Concluded.
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Test: Helium Gun

Remarks: Subsonic drag locks too high.

Figure 1h1.
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Figure 141.- Concluded.
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Designation: 134

Test: Helium Gun

Figure 142.
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Designations 138

Tests Helium Gun

Remarks: Remarks for configuration 125 (fig. 131) mey apply to these
. models glsoc. .

Figure 1k,
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Figure 144.- Concluded.
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Designation: 139

Tests Helium Gun

Remsrks: Remsrks for configuration 125 (fig. 131) may apply to these
models also. : =

Figure 145.
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Figure 145.- Concluded.
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Figure 147.



NACA TN 4201 301

S

Figure 147.- Concluded.



302

x/1

V/dpota)

8.0k

1/dyoge

S/A

Ap/A

v/Ansa

8.04

Sp/h

Designations 142

Tests

Helium Gun

Figure 148.

NACA TN L20l



NACA TN k201 _ ' 303

Figure 148.- Concluded.



NACA TN k201

304
,880—s
52 36
} B Ax24
— 037 .
L 13
1.0
.8
.6
r/R
ok
.2
0 1 .2 .3 AN .5 .6 .7 .8 .9 1.0
x/1
V/dmotal{ 8,07/ %Nose Sp/h | 23,75 |Ap/A o1
Wiy | 8.07f st | 8e/A | K2 & L.3°

Designations iz

Tests Helium Gun

Figure 149,



Ix"

NACA TN k20l

12x10

Figure 149.- Concluded.

505



306 NACA TN 4201

.2 1.0
x/1

1/8rota1/8,20 |*/dNose Sp/A | 26,21 |Ap/A A8

V/dyia |8,10 [M/%ss 8e/k | 33,0 | b 21.50

Designations 1)4)4

Test: FHellium Gun

Figure 150.



NACA TN L201 307

Cp
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Test: Helium Gun

Figure 151.
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Figure 153.
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Figure 156.
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Figure 164.- Concluded.
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Figure 168.- Concluded.
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Figure 172.- Concluded.
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Figure 182.
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Figure 182.- Concluded.
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Tests Helium Gun

Figure 183.
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